

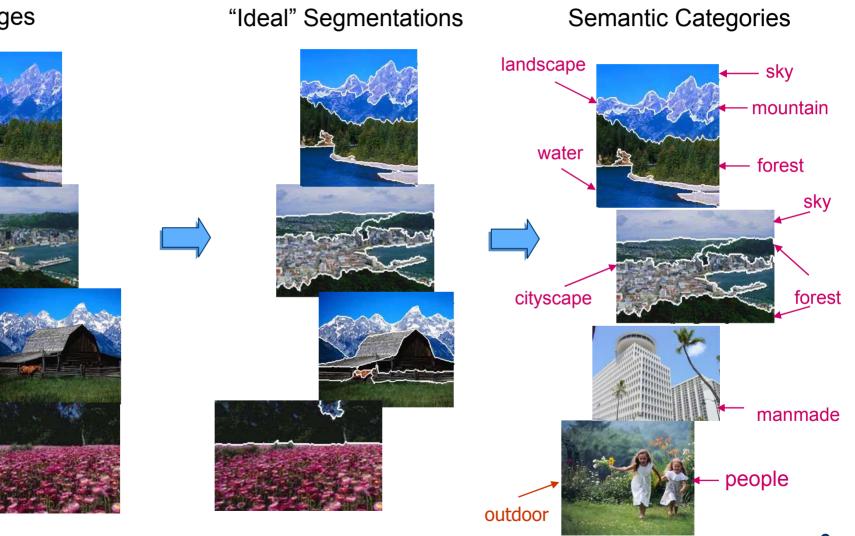
Northwestern University Department of Electrical and Computer Engineering

Perceptual Image Segmentation, Background Subtraction, and Semantic Classification

Aggelos K. Katsaggelos

Professor Northwestern University Department of EECS aggk@eecs.northwestern.edu

Problem



Images

2

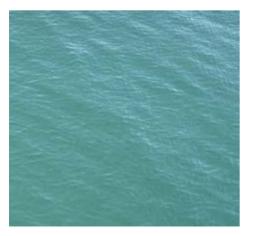
Aggelos K. Katsaggelos, September 4, 2006

Segmentation Approaches

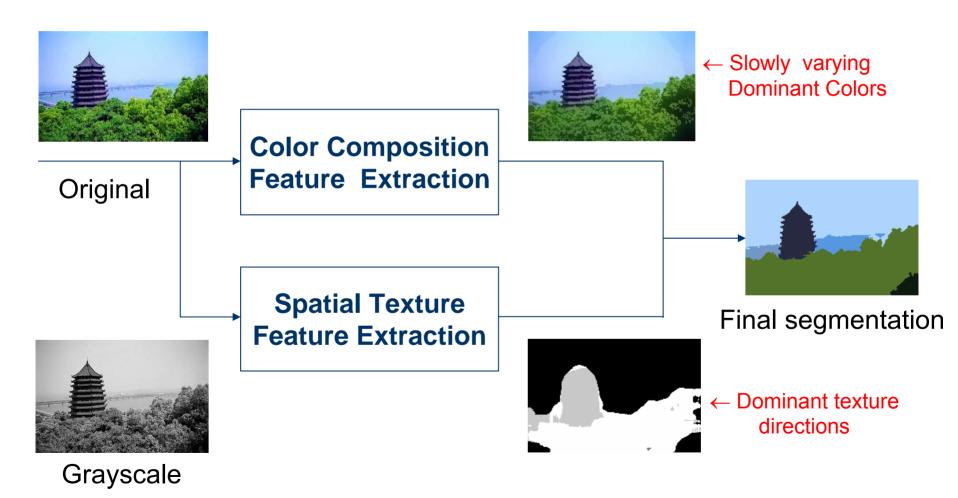
- Histogram Thresholding
- Clustering
- Edge-based Techniques
- Region Growing
- Split-and-Merge
- Watershed
- Model-Based Approaches

Natural Textures

- Combine color composition, spatial characteristics
- Non-uniform statistical characteristics (lighting, perspective)
- Perceptually uniform
- Need spatially adaptive features
- Small number of parameters



Adaptive Perceptual Color-Texture Segmentation



Aggelos K. Katsaggelos, September 4, 2006

Color Composition Features

- Dominant Colors
 - Human eye cannot simultaneously perceive a large number of colors
 - Efficient representation
 - Easier to capture invariant properties of object appearance
 - Applied to image classification [Ma'97, Mojsilovic'00]
- Current Approaches
 - K-means (VQ) [LBG'80]
 - Mean-shift [Comaniciu-Meer'97]
 - Assumption: constant dominant colors
- Spatially Adaptive Dominant Colors
 - Capture spatially varying image characteristics
 - Use ACA [pappas'92]

Color Composition Features

Constant Dominant Colors:

$$f_c = \left\{ (c_i, p_i), i = 0, \dots, n \right\} \qquad \begin{array}{c} c_i: \text{ color} \\ p_i: \text{ percentage} \end{array}$$

Spatially Adaptive Dominant Colors:

$$f_c(s, N_s) = \{ (c_i, p_i), i = 0, ..., n \}$$

- ACA adapts to local characteristics.
- Dominant colors relatively constant in small neighborhood; but change as we move across the image.

Adaptive Clustering Algorithm (ACA)

- K-means clustering (LBG)
 - Based on image histogram
 - No spatial constraints
 - Each cluster is characterized by constant intensity
- Add spatial constraints
 - Region model: Markov/Gibbs random field
- Make it adaptive
 - Cluster centers spatially varying
 - Texture model: spatially varying mean + WGN
- MAP estimates of segmentation x given observation y

$$p(x \mid y) \propto p(y \mid x) p(x)$$

8

ACA

• K-means minimizes

$$\sum_{s} (y_{s} - \mu^{x_{s}})^{2}$$

• Adaptive clustering maximizes

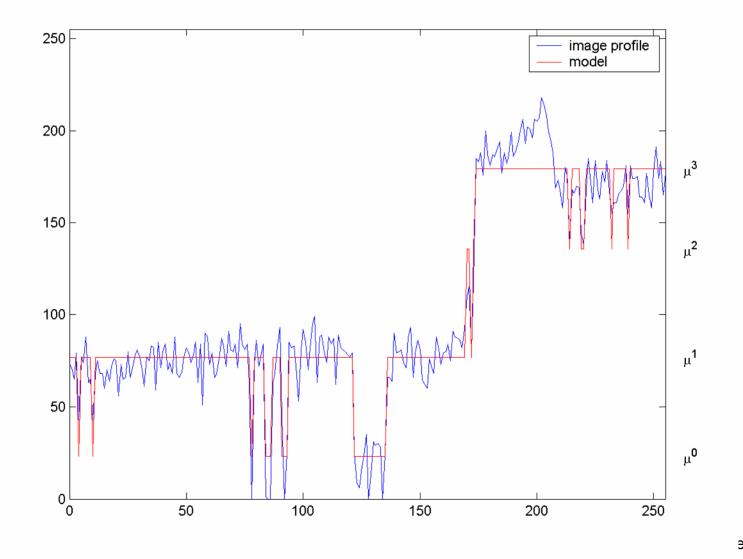
$$p(x \mid y) \propto \exp\left\{-\sum_{s} \frac{1}{2\sigma^{2}}(y_{s} - \mu_{s}^{x_{s}})^{2} - \sum_{C} V_{C}(x)\right\}$$

• Or, minimizes

$$\sum_{s} \frac{1}{2\sigma^{2}} (y_{s} - \mu_{s}^{x_{s}})^{2} + \sum_{C} V_{C}(x)$$

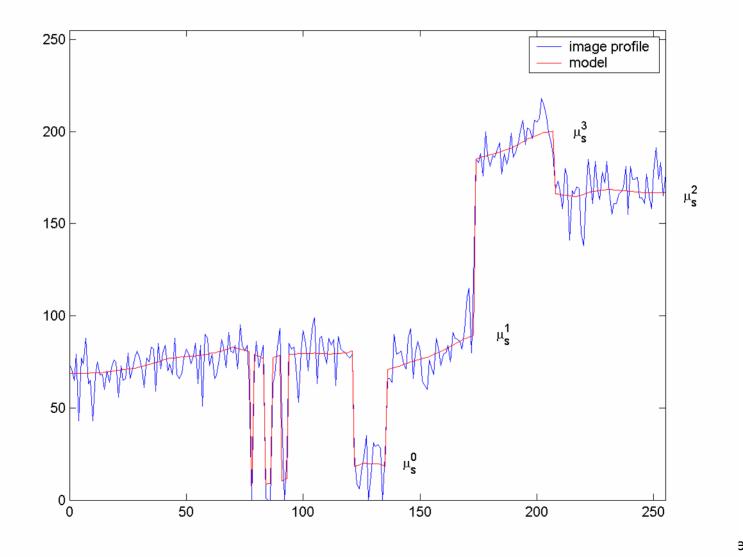
9 Aggelos K. Katsaggelos, September 4, 2006

K-means Clustering



10 er 4, 2006

ACA: Model (15x15)



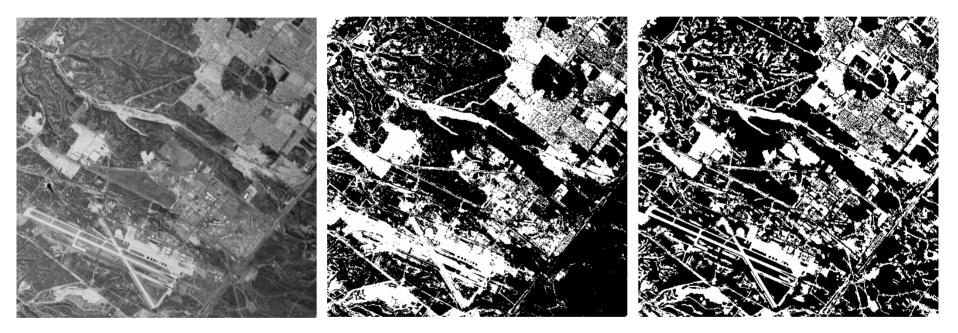
11 er 4, 2006

Adaptive Clustering Algorithm

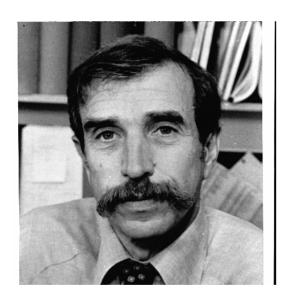
Original Image

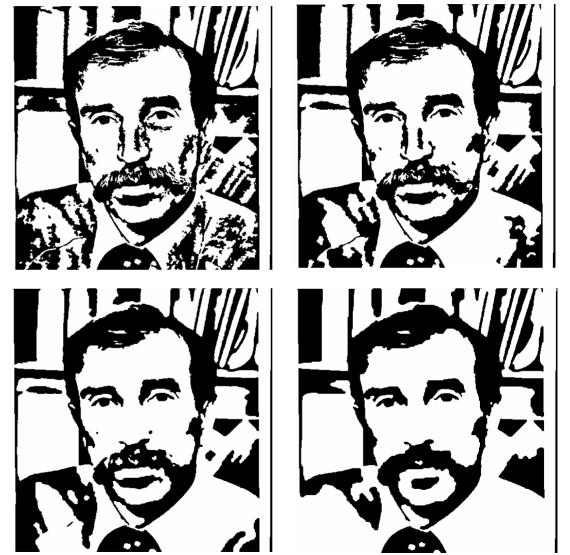
K-means Class Labels

ACA Class Labels



ACA



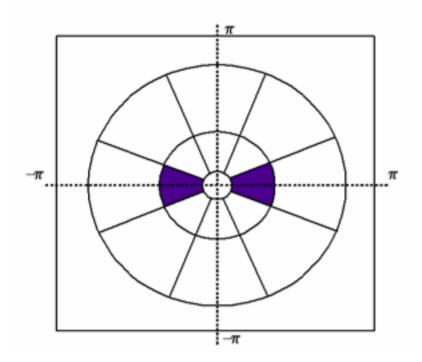


Aggelos K. Katsaggelos, September 4, 2006

Spatial Texture Features

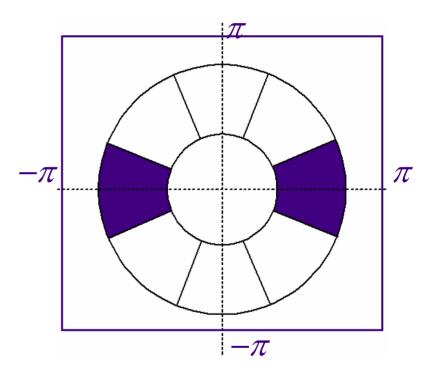
- Grayscale image component (vs. achromatic pattern map)
- Multiscale frequency decomposition
 - DWT (9/7 Daubechies)
 - Steerable filters [Freeman-Adelson'91]
 - Gabor filters [Daugman'86]
- Energy of subband coefficients is sparse
 - Use local median energy

Steerable Pyramid Decomposition



Ideal spectrum

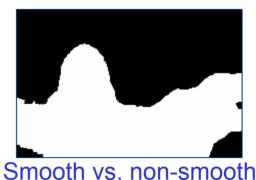
2-level decomposition

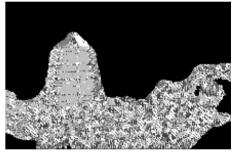


Ideal spectrum 1-level decomposition

Spatial Texture Feature Computation

- At each pixel, compute
 - S_{max} = Maximum of 4 subband responses
 - $-\mathbf{S}_i$ = Index of maximum coefficients
- Smooth vs. non-smooth classification
 - Local median energy of S_{max}
 - 2-level K-means
 - Use threshold provided by subjective test
- Non-smooth region classification
 - Construct local histogram of S_i
 - "Complex" if no dominant orientation
 - Otherwise classify according to dominant orientation as "horizontal," "vertical,"
 "+45," "-45."





 S_i indices

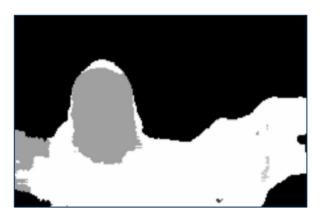


Multi-scale Texture Classification

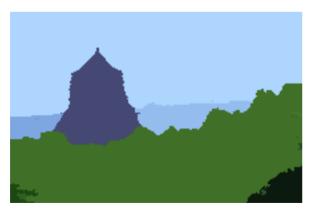
- Apply texture classification at each scale
- Combine texture classes from different scales based on the following rules:
 - "smooth": "smooth" at all scales
 - "Vertical," "Horizontal," "+45°," "-45°": consistent texture classification across all scales. Note: "complex" or "smooth" is consistent with any single direction
 - "complex": none of above satisfied

Segmentation

Color composition



Spatial texture

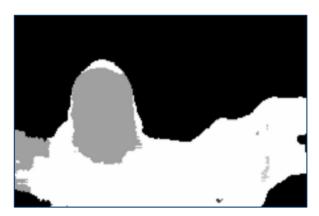


Crude segmentation

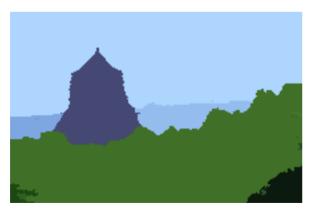
Final segmentation

Segmentation

Color composition



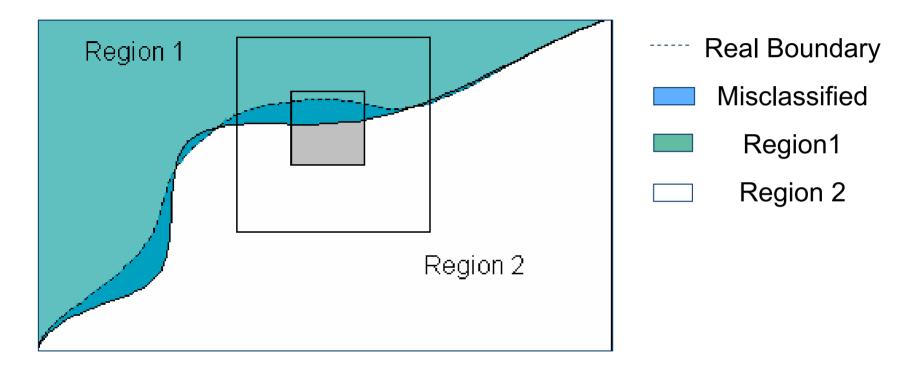
Spatial texture



Crude segmentation

Final segmentation

Iterative Border Refinement



Color features in inner window represent local features

Color features in outer window represent region-wide characteristics Window pairs used: {35/11, 21/9, 11/5, 11/3}

Results with steerable filters without Perceptual Tuning

Original

ACA

Segmentation

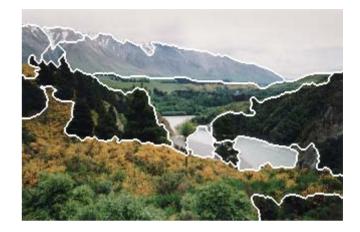
Results with steerable filters with Perceptual Tuning

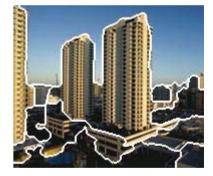
Original

ACA

Segmentation

Segmentation Results





Aggelos K. Katsaggelos, September 4, 2006

Spatiotemporal Algorithm for Joint Video Segmentation and Foreground Detection

Background Subtraction

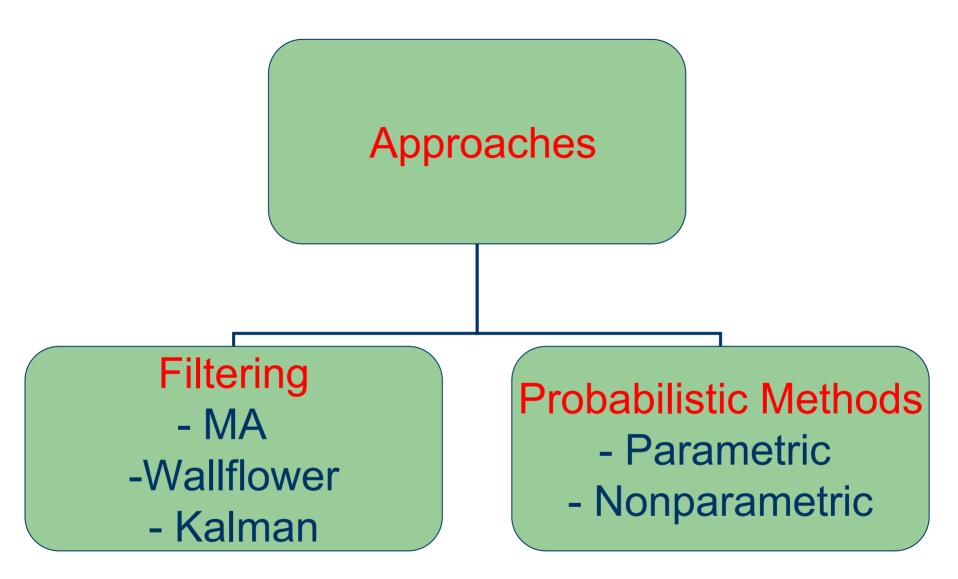
- Extracting moving (foreground) objects
- Building a background model
- Adaptation to changes in the scene
- Robustness
- Accuracy for applications like tracking

Video Segmentation

- Provides higher-level semantic representation compared to traditional pixel-based representation
 - Object-based Video coding (MPEG4)
 - Content extraction for indexing, retrieval (MPEG7)
- Goals
 - Complete object-based representation
 - Combination of video segmentation and foreground/ background separation

Important Issues in Background Subtraction

- Dynamic Background (sky, leaf, branch, light, specularity)
- Gradual Illumination Changes (Time of the day)
- Sudden Illumination Changes (Light switch, clouds)
- Sleeping person: Foreground object becomes completely still
- Waking person: Background object starts moving
- Shadows
- Bootstrapping (Initialization)



Derin Babacan

Basic Methods

- Adjacent Frame Difference
- (Running) Average of Frames
- Wallflower
- Eigenbackgrounds
 - Images of motionless backgrounds
 - Principal Component Analysis
 - Difference between the projection and current frame is foreground
 - Exploits spatial correlation using covariance matrix

Unimodal: Pfinder

- Model the background pixel intensities by one Gaussian
- Update the Gaussian statistics with time
- Low complexity, low memory
- Good for unimodal backgrounds
 - Small lightning changes
 - Nearly stationary background

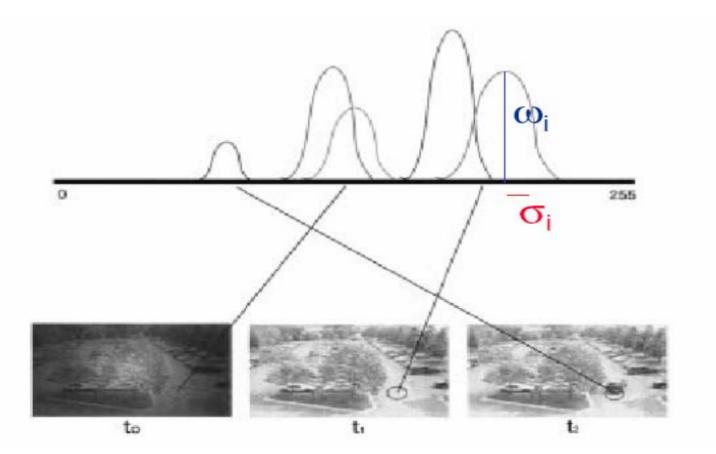
Mixture of Gaussians (MoG)

- Stauffer & Grimson 2000: Model the pixel intensity values by a mixture of Gaussians
- Complex time-varying multimodal backgrounds

$$P(y_t) = \sum_{i=1}^{K} \omega_{i,t} * \eta(y_t, \mu_{i,t}, \Sigma_{i,t})$$

- Adaptation AR filtering with new data
- Relabeling of Gaussians

Mixture of Gaussians (MoG)



MoG: Relabeling of Gaussians

- Order distributions (ω/σ)
- Background / Foreground distribution decision

$$B = argmin_b \left(\sum_{k=1}^b \omega_k > T\right),$$

- T: measure of minimum portion of data accounted by background
- High T: multimodal background

MoG: Adaptation

- Every new pixel value is checked for a "match"
 - Start with the most likely distribution (highest ω/σ)
 - Pixel value within 2.5σ of a distribution
- Update and normalize weights

• Update match
$$\omega_{k,t} = (1 - \alpha)\omega_{k,t-1} + \alpha M_{k,t}$$
 $M_{k,t} = \begin{cases} 1 & \text{if match} \\ 0 & \text{if no match} \end{cases}$

$$\mu_t = (1 - \rho)\mu_{t-1} + \rho y_t$$
$$\sigma_t^2 = (1 - \rho)\sigma_{t-1}^2 + \rho (y_t - \mu_t)^T (y_t - \mu_t)$$
$$\rho = \alpha \eta (y_t | \mu_k, \sigma_k)$$

Parametric Methods

• Advantages:

- Fast
- High adaptation to background changes
- Fast initialization
- Disadvantages:
 - No spatial constraints (Post processing may be needed, especially in outdoor scenes)
 - Vulnerable to global changes in short-time

Kernel Density Estimation (KDE)

• Elgammal et al. 00

$$\hat{p}(y) = \sum_{i=1}^{N} \alpha_i K_{\sigma}(y - z_i)$$

- Does not assume specific shape for density
- Smoothed histogram: For high N, it converges to true density function
- Use Gaussian for K_{σ}
- Background pdf is estimated using N recent pixel values
- Adapt by adding new samples and dropping old ones

Background Subtraction

Nonparametric Methods

• Advantages:

- Any probability distribution
- Some spatial constraints
- Disadvantages:
 - High memory requirement
 - Slow
 - Initialization phase

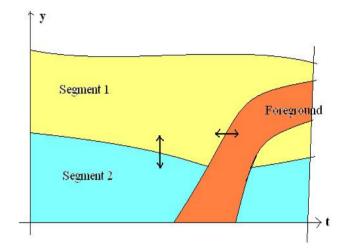
Spatial Information

- Use spatial information to improve accuracy and robustness of foreground detection
 - Exploit spatial correlations
 - Spatiotemporal probabilistic model for pixel intensities
- Related prior work: 3-D ACA (adaptive clustering algorithm) [Hinds & Pappas'95]
 - Spatiotemporal MRF/GRF constraints
 - Spatiotemporally varying region intensities

Spatiotemporal Segmentation (3D-ACA)

- 3D-ACA can be used to detect foreground

 New regions labeled as foreground
- Computationally expensive
- Temporally insensitive
 - Treats foreground/background boundary background boundaries
- Need more sensitivity for foreground segment detection
- More variation in spatial than temporal dimension
 - Still image vs. video coding
 - Inter vs. intra coding



Joint Spatiotemporal Segmentation and Background Subtraction

- Combine background subtraction with segmentation
 - Assume single stationary camera
 - Assume no foreground objects in the first few frames
- Initialize (first few frames) with 3D-ACA
- Use MRF constraints only in spatial dimension
 - Eliminate temporal MRF constraints for increased sensitivity
 - Spatial continuity
- Use spatiotemporal background model for background intensities
 - Spatiotemporally varying region intensities
 - Fidelity to data

Temporal Modeling

• Pixel distribution modeled by K spatiotemporal Gaussians

$$p(\mathbf{y}) \propto \sum_{x} p(\mathbf{y}|\mathbf{x}) \quad P(y_{s,t}) = \frac{1}{K} \sum_{i=1}^{K} \eta(y_{s,t}; \boldsymbol{\mu}_{i,s,t}, \boldsymbol{\Sigma}_{i,s,t})$$
Segment 1 Segment 2
$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{pmatrix}$$
(no weights) (no w

Compute local mean and variance for each Gaussian in base frame

Foreground Detection

- Pixel intensity compared with
 - K background distributions
 - (Any existing) Foreground distribution
- In case of no match, pixel is assigned to foreground
- Once new foreground object is encountered, build new foreground distribution (single Gaussian)
 - Single Gaussian is sufficient in case of small lightning changes and small texture difference
- Calculate local mean and variance (spatiotemporally, as for background regions)

Adaptation

• After labeling, compute the local statistics

$$\hat{\mu}_{i,s,t} = \sum_{x_{i,s,t}=i} y_{s,t}$$

Apply a low-pass filter with exponential weighting

$$\mu_{i,s,t} = (1-\alpha)\mu_{i,s,t-1} + \alpha\hat{\mu}_{i,s,t}$$

 $\Sigma_{i,s,t} = (1-\alpha)\Sigma_{i,s,t-1} + \alpha(\hat{\mu}_{i,s,t} - \mu_{i,s,t})^T (\hat{\mu}_{i,s,t} - \mu_{i,s,t})$

Properties

- Insensitive to learning parameters
 - Spatially smoothed data instead of raw
- Increased sensitivity over 3D-ACA
- High accuracy
- Medium Complexity (Real-time)
- Spatial MRF constraints necessary for stability

Video Segmentation

 Spatial MRF necessary for preserving continuity in background regions

Example A: Algorithm

Base Frame

Labeling

Result

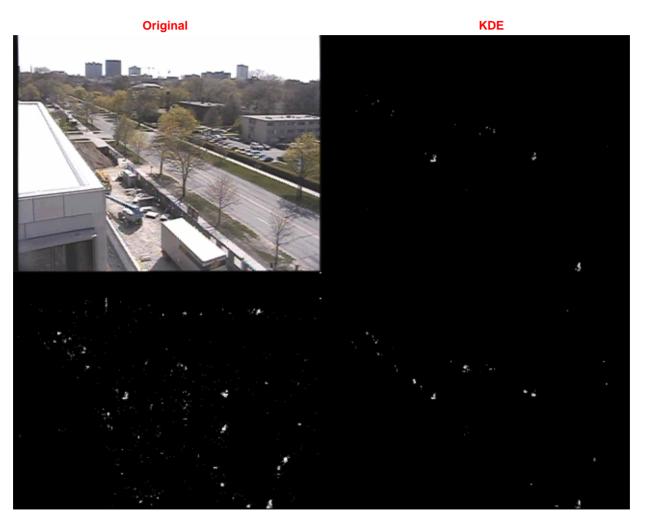
Example B: Hall Monitor

Original **KDE**

MoG

Proposed

Example C: Ford Webcam



MoG

Proposed

Example A: Hall Monitor

Original Sequence

Segmentation

Foreground Detection

Example B: Ford Webcam

Original Sequence

Segmentation

Foreground Detection

Example C: Proposed vs 3D-ACA

Proposed

MoG vs. KDE vs. Proposed

Low complexity	High complexity	Medium complexity	
Low memory	High memory	Low memory	
Very sensitive learning	Insensitive learning	Insensitive learning	
Adaptation rate ?	Fast adaptation	Fast adaptation	
Short initialization	Very long initialization	Short initialization	
Low selectivity	High selectivity	High selectivity	
High noise	Low noise	Low noise	

Semantic Information Extraction

Motivation

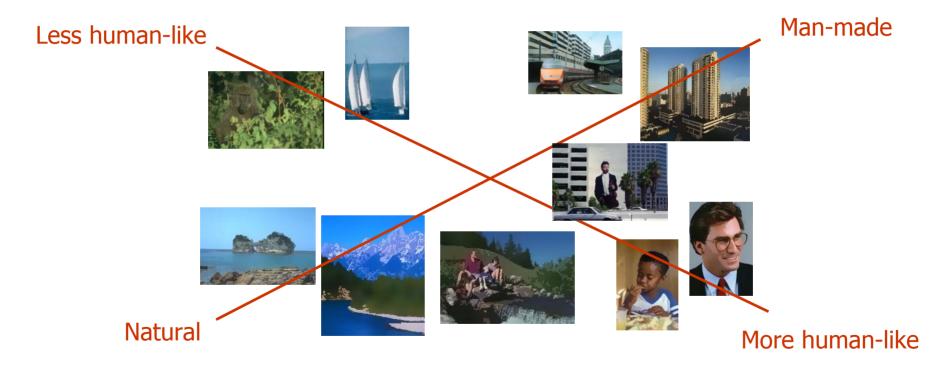
- Proliferation of image and video acquisition devices
 - (digital still and video cameras, image and video phones, PDAs)
- World rich in digital visual content
- Large personal repositories (consumer market)
- Increasing processing capabilities
- Goal: Intelligent content management
 - Semantic labeling
 - Content organization
 - Efficient retrieval

• What are the important semantic categories?

 How to link the low-level features to semantically important categories?

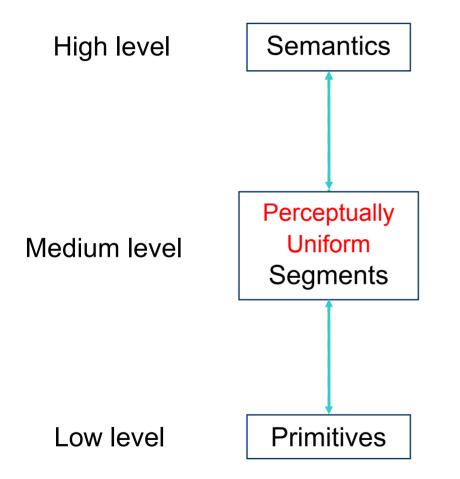
Semantic Categories

• Recent perceptual experiments by Mojsilovic and Rogowitz identified important semantic categories that humans use for image classification



 Conjecture: Semantic categories can be derived from combinations of low-level image features

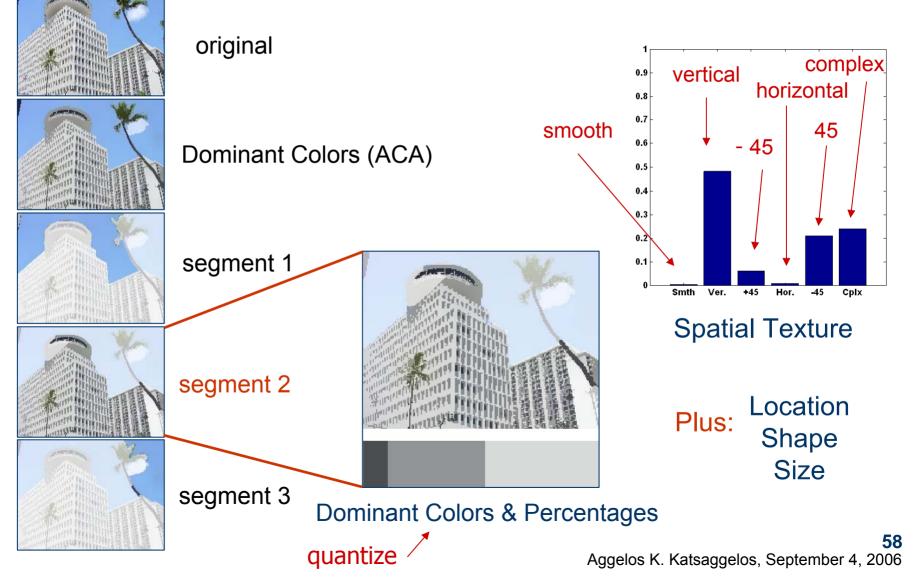
Bridging the Semantic Gap



Use segment descriptors and statistical techniques to relate segments (first) and scenes (later) to semantic categories/labels

Incorporate knowledge of human perception and image characteristics into feature extraction and algorithm design

Semantic Information Extraction (at Segment level)



Color Naming Syntax

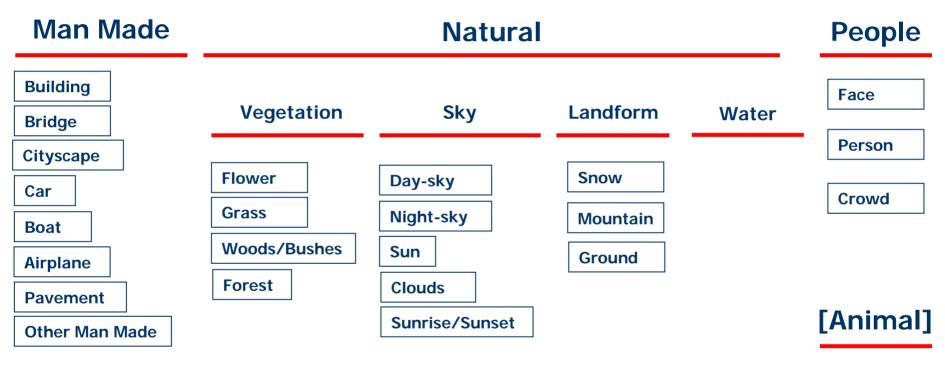
Hue primary	Hue secondary	Lightness	Saturation	Achromatic
red orange brown yellow green blue purple pink	reddish brownish yellowish greenish bluish purplish pinkish	grayish moderate medium strong vivid	blackish very-dark dark medium light very-light whitish	black gray white
beige magenta olive	267 qı	uantization poi	nts (<u>NBS</u> , Mojs	silovic′02)

Eleven Colors That Are Almost Never Confused (Boynton'89)

Labels

(consistent with NIST TRECVID 2003 development set)

Segment

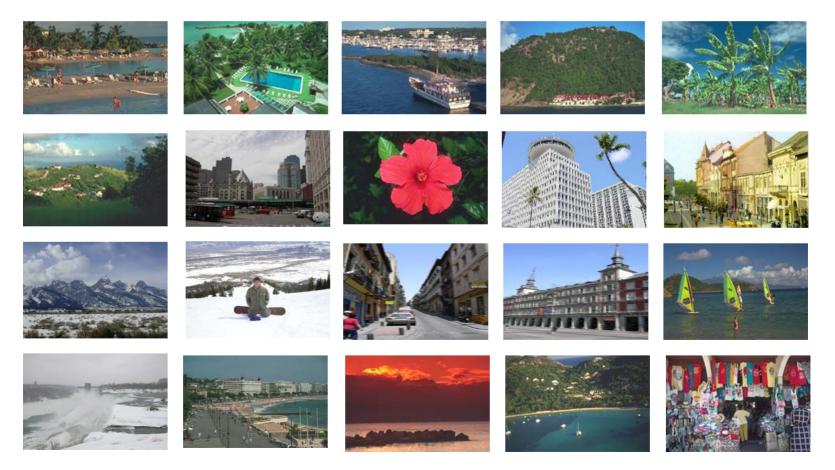


Scene

Indoor Outdoor: Street, skyline, beach, garden, night scene, day scene ...

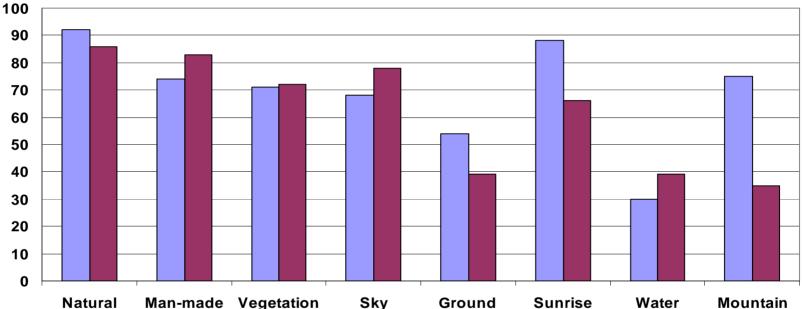
Database (Training, Testing)

9000 Labeled segments 2500 Images (Corel Stock Photo, Berkeley, other)



61 Aggelos K. Katsaggelos, September 4, 2006

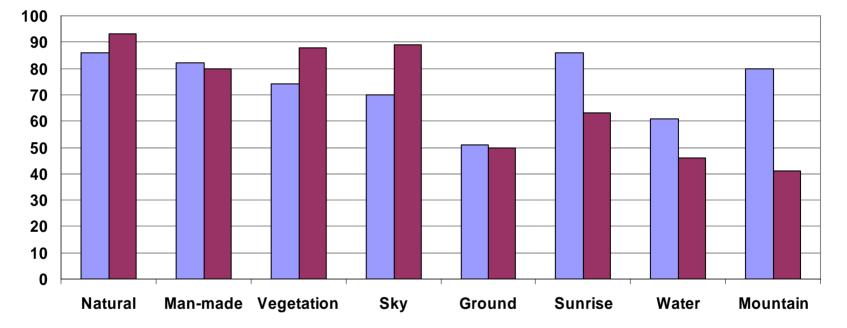
$Precision = \frac{number of correctly classified segments}{total number assigned to a label}$ $Recall = \frac{number of correctly classified segments}{total number of relevant segments}$ $number of Recall = \frac{number of correctly classified segments}{total number of relevant segments}$



■ Recall ■ Precision LDA using texture features and fourteen perceptually quantized colors

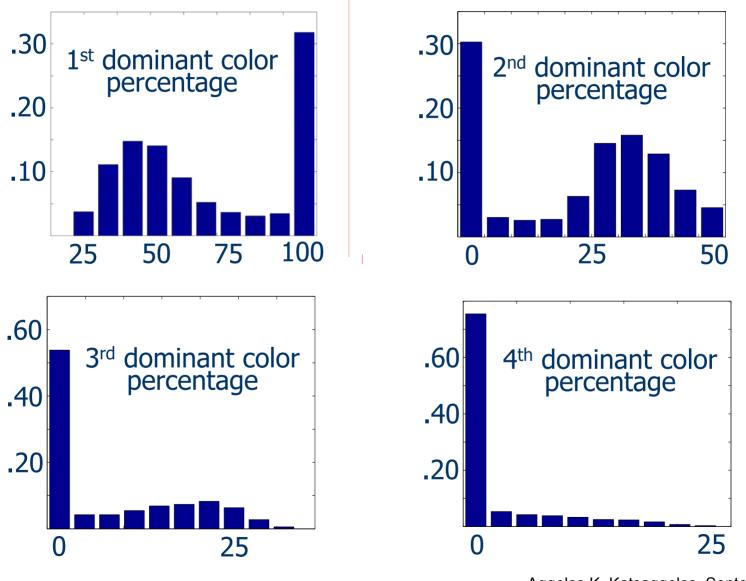
 $Precision = \frac{number of correctly classified segments}{total number assigned to a label}$

 $Recall = \frac{number of correctly classified segments}{total number of relevant segments}$



■ Recall ■ Precision LDA using texture features and first dominant color

Statistics of Dominant Colors

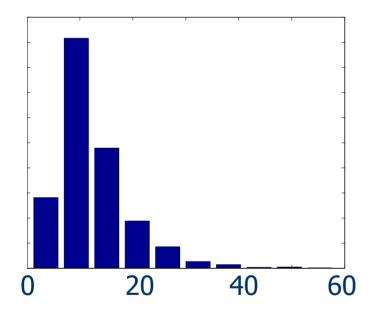


Aggelos K. Katsaggelos, September 4, 2006

64

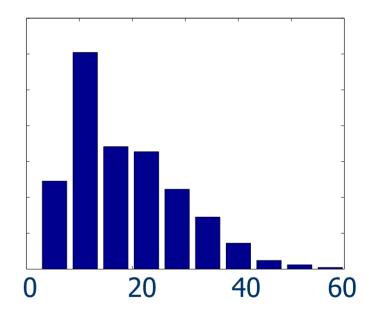
Statistics of Dominant Colors

Distance between 1st and 2nd dominant color



L*a*b distance

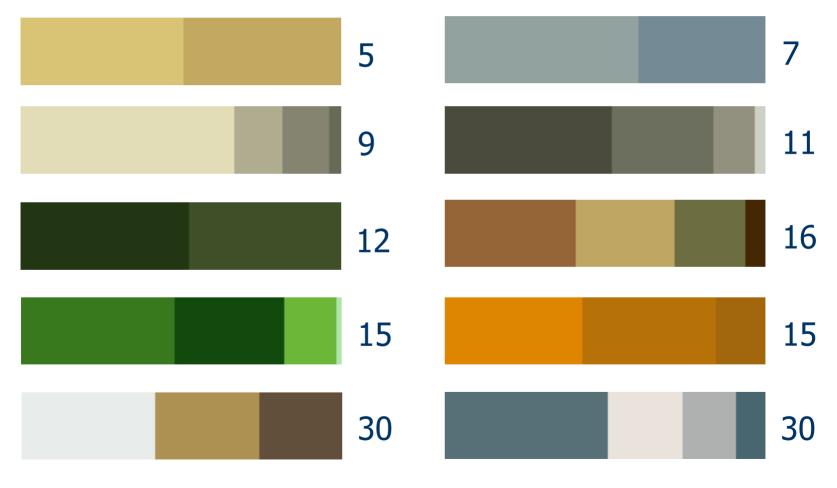
Distance between 1st and 3rd dominant color



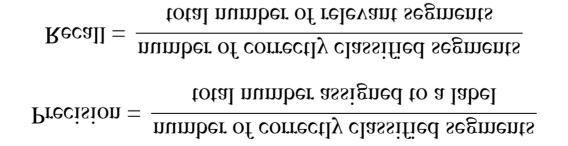
L*a*b distance

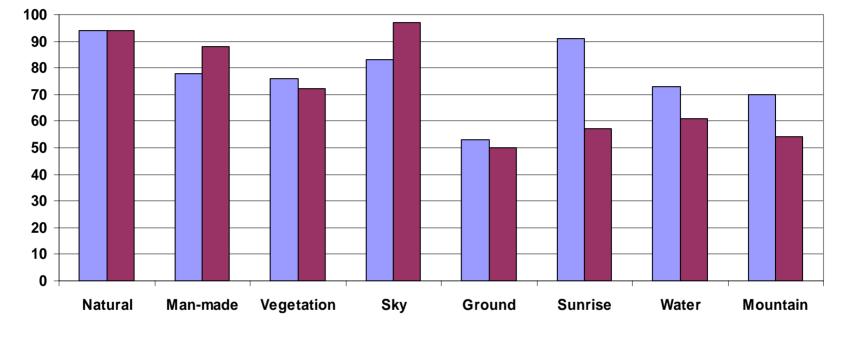
Statistics of Dominant Colors

L*a*b* distances between first and second dominant color:

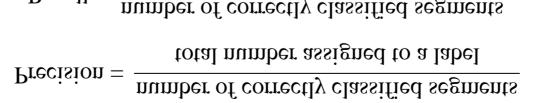


66 Aggelos K. Katsaggelos, September 4, 2006

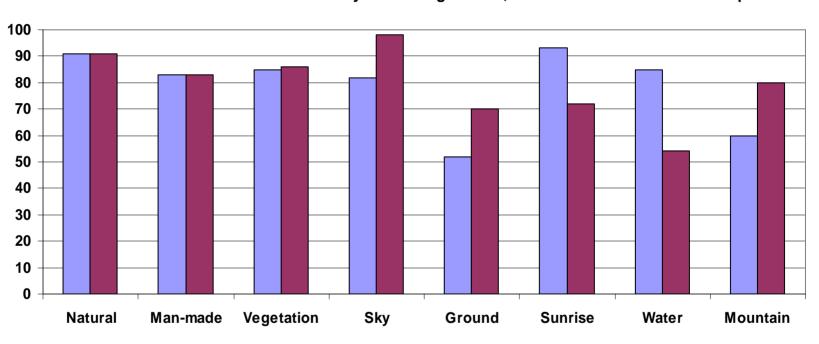




■ Recall ■ Precision LDA using texture, first two dominant colors and position



 $Recall = \frac{number of correctly classified segments}{total number of relevant segments}$



■ Recall ■ Precision K-means followed by LDA using texture, first two dominant colors and position

Results

Publications

- J. Chen and T. N. Pappas, "Experimental determination of visual color and texture statistics for image segmentation," *Human Vision and Electronic Imaging X*, Proc. SPIE Vol. 5666, pp. 227 - 236, Jan. 2005.
- J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, "Adaptive perceptual colortexture image segmentation," *IEEE Trans. Image Processing*, vol. 14, pp. 1524--1536, Oct. 2005.
- T.N. Pappas, J. Chen, and D. Depalov, "Learning perception," OE Magazine, vol. 5, pp. 18 20, Oct. 2005.
- D. Depalov, T. N. Pappas, D. Li, and B. Gandhi, "Perceptually based techniques for semantic image classification and retrieval," *Human Vision and Electronic Imaging XI*, Proc. SPIE Vol. 6057, (San Jose, CA), Jan. 2006.
- D. Depalov, T. N. Pappas, D. Li, and B. Gandhi, "A perceptual approach for semantic image retrieval," *Proc. ICASSP-06,* (Toulouse, France), May 2006. To appear.
- D. Depalov, T. N. Pappas, D. Li, and B. Gandhi, "Perceptual feature selection for semantic image classification," Proc. Int. Conf. Image Processing (ICIP-06), (Atlanta, GA), Oct. 2006. Submitted.